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A method based on the descripition of flows by a functional which has the equations of 
ideal gas flow as its extremes has been developed to refine the solutions of problems in- 
volving, the aerodynamic design of airfoil profiles. Study of the behavior of the second 
variation of the functional made it possible to identify its extremum, which in turn permits 
the calculation of mixed flows about airfoils (including transonic flows). The stream func- 
tion through which all of the quantities in the functional are expressed is approximated by 
an expansion in a basis consisting of eigenfunctions of the Laplace operator. The problem 
is solved by defining the extremum in the finite-dimensional space of the weight factors of 
the basis. The value of the functional at the running point of the space is calculated using 
an approximation of the integrand by Hermite polynomials. 

The solution of the problem of constructing critical airfoil profiles is equivalent 
to the construction of a streamline connecting specified sections of a boundary. The con- 
gruence theorem [i] makes it possible to change over from the construction of a free streamline 
with a local Mach number M = I to the problem of the maximum of the cross-sectional area of 
of the equations of gasdynamics. These constraints can be satisfied with minimization of the 
functional 

I=~(P+Pq2) d~. ( 1 )  

It is known [2] 

qx(Vxq)=--~-(a 2-q~)Vln], V(pq)=O, 

(q .Vf = 0 is the adiabaticity condition). 

The Bernoulli equation has the form 

- T q  .r _ - t  -b- - -~ - a -  

that the variational equations for (i) are the equations of plane flows: 

P = fP~, l n / = s  (2) 
c V 

We used the following notation in (2): q = (u, v) is the velocity vector; p is pressure; p 
is density; a is sonic velocity; s is entropy; y = Cp/C V is the adiabatic exponent; Cp and 
c V are the heat capacities of the gas at constant pressure and volume; f is a function of ~, 
which is a constant in the case of steady flow and the absence of vorticity at infinity if 
there are no shock waves. Written in terms of the stream function ~(x, y), Eq. (i) appears 
as 

where 
F 2y ll/(v-l) 

p ( , ,  v , )  = (p + pq ); 

o = / ( l  - -  ; ( t  - -  = 

If the Euler-Lagrange equations for (i) are to coincide with (2), it is necessary that 
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This is valid for the boundary conditions in the problem of flow about an airfoil, since it 

reduces to the condition 

(-- v, u) n6~ dl = 0 ,  

which is the difference in circulation on the external and internal boundaries. 

variation of (i) has the form 

__ f - ,Z (1 -~ ' )~  (1 __ q~yez(~-l) ae. ln  ( o_ .(0~ Ou - "  O~b" f -  V f--1/(7--1) 
- -  aV~ \ax ag 

In the above expressions, O/OV~ ~ (O/O~x. O/O~u), ~x = O~/Ox, 
c o n s t .  ( 4 )  r e d u c e s  t o  

The second 

t (1 _ q~)~,/(v-~) -b-~- In f))]  6 ~  do). 
27 

~y = O~/Oy. For flows with f(~) = 

5`*i = 2yF~(~-~)j" S A-~- 62~ d~o. 
f~ 

(4) 

Alternatively, if we omit the positive constants we obtain 

N - S (vq)  + J" vqn62, dz (5 )  

(d~ is the boundary of the region of integration ~). The second term in (5) is equal to 
zero, since Vq is directed along a tangent to the contour and q = const in the undisturbed 
flow. Thus, it is necessary to minimize the convex functional. 

Let the area functional 

& = S-~(F), ( 6 ) 

where y = F(x, p) is the function giving the contour. It consists of cubic splines for the 
top and bottom contours of the profile. These splines are constructed from the nodes that 
specify them. 

The solution of the projection problem is obtained by determining the extremu~a of the 
combined functional J. This functional consists of (i) and (6) in the finite-dimensional 
space of the weight factors of the basis used to represent the stream function and parameters 
P that give the profile. 

In the present case, the stream function is approximated by an expansion in a basis con- 
sisting of eigenfunctions of the Laplace operator in the region ~. The parameters P are the 
ordinates of the nodes which give the contour of the airfoil except for the fixed tip. The 
latter consists of a circle arc and the sections immediately above and below the trailing 
edge. 

If the flow moves past the airfoil at the angle of attack ~ with the velocity q~, then 
with allowance for the asymptotic solution in [3] we can determine the stream function on 
the external boundary from the formulas 

(x ,y)=p~ u ~ y - - v ~ x - - - ~  f l(x,~)d~+ f~(n,y) dn , 
0 

Y 
t [El 2AI -- E1D1 arct  2~ -~- D l ] [Y 

. i -- z Jlo 

t [ ~  In ('rl ~ -{- D2'q -1- B~) -f- 2Af - -  E2D2 arztg 2.  A" .,9,, 

A l = - x s i n c t , A 2  = g s i n a ,  E 1 = E ~ = c o s %  ( 7 )  

C 1 = sin 2 a -6 k`* cos 2 a ,  Cz = cos 2 o~ -4- k 2 sin ~ % 

B 1 = x2(cos 2 a -6 k 2 sin`* o:)/C1, B2 = y2( sin`* ~ -t- k ~ cos 2 a)/C2, 

Di=2AiEiM~/Ci, i = t ,  2, k ` * = l - - S I ~  

(F is circulation). 
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As the initial airfoil, we take an airfoil with a fairly high critical Mach number (M~ = 
0.68). This airfoil was designed by the method of constructing the quasi-solution of the in- 
verse boundary-value problem for the Chaplygin gas model.* The angle at the trailing edge 
of this and all subsequent airfoils is equal to zero. We minimized functional (I) to calcu- 
late flow about the given profile within the framework of the equations of gasdynamics. Fig- 
ure 1 shows the distributions of the corresponding velocities about the contour for different 
models. Here, the solid line corresponds to the Chaplygin gas (Cy = 0.383, C X = -0.001), 
while the dashed line corresponds to an ideal gas (Cy = 0.48, C x ~ 10-5). The difference of 
C x from zero is related to the computing error. 

The above formulation of the design problem contains geometric constraints on the airfoil 

x h - - x o = L , L = c o n s t ,  F(x o,p) = 0 ,  F(x h,~ = 0 ,  (8) 

Fx(xo, p) = 0% Fx(xh, p) > / t g  0 o, --u/2 ~< 0 o < 0 

and aerodynamic constraints on the flow 

M~=M%, C~>~C~, M~<i.  (9) 
The first optimization problem involves constructing a airfoil F(x, p), that satisfies 

conditions (8) and (9) and has the maximum areai The second differs from the firstin that, 
instead of flow functional (i), we took a functional corresponding to the Chaplygin gas model: 

[~{x, y) is the flow potential]. 

The conditions for ~ on the external boundary are written on the basis of the same asymp- 
tote as was used for velocity (7). On the contour, instead of ~ = 0 we have ~/~n = 0. In the 
case of isentropic flows, the Zhukov condition for airfoils with a sharp trailing edge is 
equivalent to equality of the values of velocity on the top and bottom sections of the airfoil 
near the edge. For a finite angle, the condition is equivalent to equality of the velocity 
to zero. This condition is introduced into J as a penalty function, and the circulation r 
calculated about the contour of the airfoil for each iteration with minimization of the func- 
tional is inserted into (7). 

The dashed lines in Fig. 2 show the modified airfoil representing the solution of the 
first optimization problem with M~ = 0.68, C~ = 0.4. Also shown is the distribution of veloc- 
ity over the airfoil. The area increment AS ~ 6% 

Figure 3 shows the solution of the second optimization problem with AS ~ 3%. The dashed 
line shows the resulting airfoil. There is a small "ledge" corresponding to M ~ i in the 
velocity distributions on part of the top contours of the modified airfoils in Figs. 2 and 3. 
The siEuation M = const is not realized on any part of the free surface of these airfoils due 
to the lower bound for Cy in (9). 

The results of the calculations confirm both the rigor of the proposed algorithm and 
airfoil design and the feasibility of using a Chaplygin gas as a model of the subsonic flow 
of a real gas in the design process. This means that more efficient design methods can be 

*The authors are grateful to D. A. Fokin (of the N. G. Chebotarev Scientific-Research Insti- 
tute of Mathematics and Mechanics, in Kazan') for providing the airfoil design and the veloc- 
ity distribution on it, 
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developed, since the solutions of the equations of minimum surfaces can be represented in 
terms of analytic functions of a complex variable. 

The author thanks A. F. Latypov for the advice given in the course of the investigation. 
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NUMERICAL MODELING OF IMPULSIVE JETS OF A VISCOUS HEAT-CONDUCTING GAS 

N. M. Bulgakova UDC 533.6.001 

Complete solution of the system of Navier-Stokes equations by the steady-state method 
with an implicit branching scheme for jets discharged from nozzles into a vacuum [I], sub- 
merged space [2], or companion flow [3] makes it possible to examine the subsonic sections 
of the flow and their effect on the structure of the jet as a whole. Additionally, the method 
proposed in [4, 5] makes it possible to calculate nonsteady processes. In the present study, 
we use this method to solve the problem of the discharge of a gas jet into a submerged space 
in the impulsive regime. This problem has application to both the formation of jets and the 
flow of quasisteady erosive jets. 

i. Formulation of the Problem. We will examine a two-dimensional (axisymmetric) prob- 
lem. Figure 1 presents a sketch of a region we are studying. It is bounded below by the 
axis of the jet OD. Line OA represents a sound outlet of radius r e (or the edge of a super- 
sonic nozzle). Above the edge of the nozzle, the boundary of the region of integration is 
a solid infinite 1 or finite 2 surface. As an alternative, AB may be a free boundary 3. 
The external boundary BC is located a distance from the axis such that the gas in the sub- 
merged space can be considered undisturbed. The boundary CD - where conditions correspond- 
ing to free discharge are established - is located a distance more than 20r e from the nozzle 
edge. 

The system of Navier-Stokes equations for a viscous compressible heat-conducting gas 
are written as follows in dimensionless form: 

ap .uOp +v~.~p +p(OU O~ v) 
e--/- ' o .  ~ 4- - ~ + T  = O, 

OU Ou OU Oe ~. e O0 
o--7 + u 7x + v ~ -  + ('e-- t)~7-~ + ( 7 -  ; -F- ~-z = 

=ndOl~aTPaT+ag~a7 + y oy - -aZ~*-a7 

2 0 8v ~ 8v 2 l O )} 
3 o~ P ~ 7  + y o~ a u e~ ( lay . ,  

8v Ov Ov Oe e Op __ 

o - / - + t + ~ - + v w + ( ? - 9 - ~ + ( v - l )  o ey 
i {O Ov 4 (0 Ov gt Ov bt$) 0 Ou 2 0 Ou 2 v 0~}  

=~g-b a7-~ ~*aT+-g - W~-aT+-V--a~ + +a7 .  ~*a-~ a ey~e~ a ~ oy , 

7F -k u gf-z + v -aT + ( ? -- l ) e q- = 

§ --g- F L\Ox / + k ou / Ox ~ + ~ -Y~ + fox / + ou o.  _1 + -3- -~ @ Ox �9 
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